Metamath Proof Explorer


Theorem supxrleubrnmpt

Description: The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses supxrleubrnmpt.x x φ
supxrleubrnmpt.b φ x A B *
supxrleubrnmpt.c φ C *
Assertion supxrleubrnmpt φ sup ran x A B * < C x A B C

Proof

Step Hyp Ref Expression
1 supxrleubrnmpt.x x φ
2 supxrleubrnmpt.b φ x A B *
3 supxrleubrnmpt.c φ C *
4 eqid x A B = x A B
5 1 4 2 rnmptssd φ ran x A B *
6 supxrleub ran x A B * C * sup ran x A B * < C z ran x A B z C
7 5 3 6 syl2anc φ sup ran x A B * < C z ran x A B z C
8 nfmpt1 _ x x A B
9 8 nfrn _ x ran x A B
10 nfv x z C
11 9 10 nfralw x z ran x A B z C
12 1 11 nfan x φ z ran x A B z C
13 simpr φ x A x A
14 4 elrnmpt1 x A B * B ran x A B
15 13 2 14 syl2anc φ x A B ran x A B
16 15 adantlr φ z ran x A B z C x A B ran x A B
17 simplr φ z ran x A B z C x A z ran x A B z C
18 breq1 z = B z C B C
19 18 rspcva B ran x A B z ran x A B z C B C
20 16 17 19 syl2anc φ z ran x A B z C x A B C
21 20 ex φ z ran x A B z C x A B C
22 12 21 ralrimi φ z ran x A B z C x A B C
23 22 ex φ z ran x A B z C x A B C
24 vex z V
25 4 elrnmpt z V z ran x A B x A z = B
26 24 25 ax-mp z ran x A B x A z = B
27 26 biimpi z ran x A B x A z = B
28 27 adantl x A B C z ran x A B x A z = B
29 nfra1 x x A B C
30 rspa x A B C x A B C
31 18 biimprcd B C z = B z C
32 30 31 syl x A B C x A z = B z C
33 32 ex x A B C x A z = B z C
34 29 10 33 rexlimd x A B C x A z = B z C
35 34 adantr x A B C z ran x A B x A z = B z C
36 28 35 mpd x A B C z ran x A B z C
37 36 ralrimiva x A B C z ran x A B z C
38 37 a1i φ x A B C z ran x A B z C
39 23 38 impbid φ z ran x A B z C x A B C
40 7 39 bitrd φ sup ran x A B * < C x A B C