Metamath Proof Explorer


Theorem supxrleubrnmptf

Description: The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses supxrleubrnmptf.x x φ
supxrleubrnmptf.a _ x A
supxrleubrnmptf.n _ x C
supxrleubrnmptf.b φ x A B *
supxrleubrnmptf.c φ C *
Assertion supxrleubrnmptf φ sup ran x A B * < C x A B C

Proof

Step Hyp Ref Expression
1 supxrleubrnmptf.x x φ
2 supxrleubrnmptf.a _ x A
3 supxrleubrnmptf.n _ x C
4 supxrleubrnmptf.b φ x A B *
5 supxrleubrnmptf.c φ C *
6 nfcv _ y A
7 nfcv _ y B
8 nfcsb1v _ x y / x B
9 csbeq1a x = y B = y / x B
10 2 6 7 8 9 cbvmptf x A B = y A y / x B
11 10 rneqi ran x A B = ran y A y / x B
12 11 supeq1i sup ran x A B * < = sup ran y A y / x B * <
13 12 breq1i sup ran x A B * < C sup ran y A y / x B * < C
14 13 a1i φ sup ran x A B * < C sup ran y A y / x B * < C
15 nfv y φ
16 2 nfcri x y A
17 1 16 nfan x φ y A
18 8 nfel1 x y / x B *
19 17 18 nfim x φ y A y / x B *
20 eleq1w x = y x A y A
21 20 anbi2d x = y φ x A φ y A
22 9 eleq1d x = y B * y / x B *
23 21 22 imbi12d x = y φ x A B * φ y A y / x B *
24 19 23 4 chvarfv φ y A y / x B *
25 15 24 5 supxrleubrnmpt φ sup ran y A y / x B * < C y A y / x B C
26 nfcv _ x
27 8 26 3 nfbr x y / x B C
28 nfv y B C
29 eqcom x = y y = x
30 29 imbi1i x = y B = y / x B y = x B = y / x B
31 eqcom B = y / x B y / x B = B
32 31 imbi2i y = x B = y / x B y = x y / x B = B
33 30 32 bitri x = y B = y / x B y = x y / x B = B
34 9 33 mpbi y = x y / x B = B
35 34 breq1d y = x y / x B C B C
36 6 2 27 28 35 cbvralfw y A y / x B C x A B C
37 36 a1i φ y A y / x B C x A B C
38 14 25 37 3bitrd φ sup ran x A B * < C x A B C