Metamath Proof Explorer


Theorem supxrltinfxr

Description: The supremum of the empty set is strictly smaller than the infimum of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion supxrltinfxr sup * < < sup * <

Proof

Step Hyp Ref Expression
1 mnfltpnf −∞ < +∞
2 xrsup0 sup * < = −∞
3 xrinf0 sup * < = +∞
4 1 2 3 3brtr4i sup * < < sup * <