Metamath Proof Explorer


Theorem supxrmnf

Description: Adding minus infinity to a set does not affect its supremum. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion supxrmnf A * sup A −∞ * < = sup A * <

Proof

Step Hyp Ref Expression
1 uncom A −∞ = −∞ A
2 1 supeq1i sup A −∞ * < = sup −∞ A * <
3 mnfxr −∞ *
4 snssi −∞ * −∞ *
5 3 4 mp1i A * −∞ *
6 id A * A *
7 xrltso < Or *
8 supsn < Or * −∞ * sup −∞ * < = −∞
9 7 3 8 mp2an sup −∞ * < = −∞
10 supxrcl A * sup A * < *
11 mnfle sup A * < * −∞ sup A * <
12 10 11 syl A * −∞ sup A * <
13 9 12 eqbrtrid A * sup −∞ * < sup A * <
14 supxrun −∞ * A * sup −∞ * < sup A * < sup −∞ A * < = sup A * <
15 5 6 13 14 syl3anc A * sup −∞ A * < = sup A * <
16 2 15 eqtrid A * sup A −∞ * < = sup A * <