Metamath Proof Explorer


Theorem supxrmnf2

Description: Removing minus infinity from a set does not affect its supremum. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion supxrmnf2 A * sup A −∞ * < = sup A * <

Proof

Step Hyp Ref Expression
1 ssdifss A * A −∞ *
2 supxrmnf A −∞ * sup A −∞ −∞ * < = sup A −∞ * <
3 1 2 syl A * sup A −∞ −∞ * < = sup A −∞ * <
4 3 adantr A * −∞ A sup A −∞ −∞ * < = sup A −∞ * <
5 difsnid −∞ A A −∞ −∞ = A
6 5 supeq1d −∞ A sup A −∞ −∞ * < = sup A * <
7 6 adantl A * −∞ A sup A −∞ −∞ * < = sup A * <
8 4 7 eqtr3d A * −∞ A sup A −∞ * < = sup A * <
9 difsn ¬ −∞ A A −∞ = A
10 9 supeq1d ¬ −∞ A sup A −∞ * < = sup A * <
11 10 adantl A * ¬ −∞ A sup A −∞ * < = sup A * <
12 8 11 pm2.61dan A * sup A −∞ * < = sup A * <