Metamath Proof Explorer


Theorem supxrpnf

Description: The supremum of a set of extended reals containing plus infinity is plus infinity. (Contributed by NM, 15-Oct-2005)

Ref Expression
Assertion supxrpnf A * +∞ A sup A * < = +∞

Proof

Step Hyp Ref Expression
1 ssel A * y A y *
2 pnfnlt y * ¬ +∞ < y
3 1 2 syl6 A * y A ¬ +∞ < y
4 3 ralrimiv A * y A ¬ +∞ < y
5 breq2 z = +∞ y < z y < +∞
6 5 rspcev +∞ A y < +∞ z A y < z
7 6 ex +∞ A y < +∞ z A y < z
8 7 ralrimivw +∞ A y y < +∞ z A y < z
9 4 8 anim12i A * +∞ A y A ¬ +∞ < y y y < +∞ z A y < z
10 pnfxr +∞ *
11 supxr A * +∞ * y A ¬ +∞ < y y y < +∞ z A y < z sup A * < = +∞
12 10 11 mpanl2 A * y A ¬ +∞ < y y y < +∞ z A y < z sup A * < = +∞
13 9 12 syldan A * +∞ A sup A * < = +∞