Metamath Proof Explorer


Theorem supxrre1

Description: The supremum of a nonempty set of reals is real iff it is less than plus infinity. (Contributed by NM, 5-Feb-2006)

Ref Expression
Assertion supxrre1 A A sup A * < sup A * < < +∞

Proof

Step Hyp Ref Expression
1 supxrgtmnf A A −∞ < sup A * <
2 ressxr *
3 sstr A * A *
4 2 3 mpan2 A A *
5 supxrcl A * sup A * < *
6 xrrebnd sup A * < * sup A * < −∞ < sup A * < sup A * < < +∞
7 4 5 6 3syl A sup A * < −∞ < sup A * < sup A * < < +∞
8 7 adantr A A sup A * < −∞ < sup A * < sup A * < < +∞
9 1 8 mpbirand A A sup A * < sup A * < < +∞