Metamath Proof Explorer


Theorem supxrre2

Description: The supremum of a nonempty set of reals is real iff it is not plus infinity. (Contributed by NM, 5-Feb-2006)

Ref Expression
Assertion supxrre2 A A sup A * < sup A * < +∞

Proof

Step Hyp Ref Expression
1 supxrre1 A A sup A * < sup A * < < +∞
2 ressxr *
3 sstr A * A *
4 2 3 mpan2 A A *
5 supxrcl A * sup A * < *
6 nltpnft sup A * < * sup A * < = +∞ ¬ sup A * < < +∞
7 4 5 6 3syl A sup A * < = +∞ ¬ sup A * < < +∞
8 7 necon2abid A sup A * < < +∞ sup A * < +∞
9 8 adantr A A sup A * < < +∞ sup A * < +∞
10 1 9 bitrd A A sup A * < sup A * < +∞