Metamath Proof Explorer


Theorem supxrre3

Description: The supremum of a nonempty set of reals, is real if and only if it is bounded-above . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion supxrre3 A A sup A * < x y A y x

Proof

Step Hyp Ref Expression
1 supxrre1 A A sup A * < sup A * < < +∞
2 id A A
3 rexr x x *
4 3 ssriv *
5 4 a1i A *
6 2 5 sstrd A A *
7 supxrbnd2 A * x y A y x sup A * < < +∞
8 6 7 syl A x y A y x sup A * < < +∞
9 8 bicomd A sup A * < < +∞ x y A y x
10 9 adantr A A sup A * < < +∞ x y A y x
11 1 10 bitrd A A sup A * < x y A y x