Metamath Proof Explorer


Theorem supxrre3rnmpt

Description: The indexed supremum of a nonempty set of reals, is real if and only if it is bounded-above . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses supxrre3rnmpt.x x φ
supxrre3rnmpt.a φ A
supxrre3rnmpt.b φ x A B
Assertion supxrre3rnmpt φ sup ran x A B * < y x A B y

Proof

Step Hyp Ref Expression
1 supxrre3rnmpt.x x φ
2 supxrre3rnmpt.a φ A
3 supxrre3rnmpt.b φ x A B
4 eqid x A B = x A B
5 1 4 3 rnmptssd φ ran x A B
6 1 3 4 2 rnmptn0 φ ran x A B
7 supxrre3 ran x A B ran x A B sup ran x A B * < y z ran x A B z y
8 5 6 7 syl2anc φ sup ran x A B * < y z ran x A B z y
9 1 3 rnmptbd φ y x A B y y z ran x A B z y
10 8 9 bitr4d φ sup ran x A B * < y x A B y