Metamath Proof Explorer


Theorem supxrrernmpt

Description: The real and extended real indexed suprema match when the indexed real supremum exists. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses supxrrernmpt.x x φ
supxrrernmpt.a φ A
supxrrernmpt.b φ x A B
supxrrernmpt.y φ y x A B y
Assertion supxrrernmpt φ sup ran x A B * < = sup ran x A B <

Proof

Step Hyp Ref Expression
1 supxrrernmpt.x x φ
2 supxrrernmpt.a φ A
3 supxrrernmpt.b φ x A B
4 supxrrernmpt.y φ y x A B y
5 eqid x A B = x A B
6 1 5 3 rnmptssd φ ran x A B
7 1 3 5 2 rnmptn0 φ ran x A B
8 1 4 rnmptbdd φ y z ran x A B z y
9 supxrre ran x A B ran x A B y z ran x A B z y sup ran x A B * < = sup ran x A B <
10 6 7 8 9 syl3anc φ sup ran x A B * < = sup ran x A B <