Metamath Proof Explorer


Theorem supxrss

Description: Smaller sets of extended reals have smaller suprema. (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Assertion supxrss A B B * sup A * < sup B * <

Proof

Step Hyp Ref Expression
1 simplr A B B * x A B *
2 simpl A B B * A B
3 2 sselda A B B * x A x B
4 supxrub B * x B x sup B * <
5 1 3 4 syl2anc A B B * x A x sup B * <
6 5 ralrimiva A B B * x A x sup B * <
7 sstr A B B * A *
8 supxrcl B * sup B * < *
9 8 adantl A B B * sup B * < *
10 supxrleub A * sup B * < * sup A * < sup B * < x A x sup B * <
11 7 9 10 syl2anc A B B * sup A * < sup B * < x A x sup B * <
12 6 11 mpbird A B B * sup A * < sup B * <