Metamath Proof Explorer


Theorem supxrub

Description: A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by NM, 7-Feb-2006)

Ref Expression
Assertion supxrub A * B A B sup A * <

Proof

Step Hyp Ref Expression
1 ssel2 A * B A B *
2 supxrcl A * sup A * < *
3 2 adantr A * B A sup A * < *
4 xrltso < Or *
5 4 a1i A * < Or *
6 xrsupss A * x * y A ¬ x < y y * y < x z A y < z
7 5 6 supub A * B A ¬ sup A * < < B
8 7 imp A * B A ¬ sup A * < < B
9 1 3 8 xrnltled A * B A B sup A * <