Metamath Proof Explorer


Theorem svrelfun

Description: A single-valued relation is a function. (See fun2cnv for "single-valued.") Definition 6.4(4) of TakeutiZaring p. 24. (Contributed by NM, 17-Jan-2006)

Ref Expression
Assertion svrelfun Fun A Rel A Fun A -1 -1

Proof

Step Hyp Ref Expression
1 dffun6 Fun A Rel A x * y x A y
2 fun2cnv Fun A -1 -1 x * y x A y
3 2 anbi2i Rel A Fun A -1 -1 Rel A x * y x A y
4 1 3 bitr4i Fun A Rel A Fun A -1 -1