Metamath Proof Explorer


Theorem swoer

Description: Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypotheses swoer.1 R = X × X < ˙ < ˙ -1
swoer.2 φ y X z X y < ˙ z ¬ z < ˙ y
swoer.3 φ x X y X z X x < ˙ y x < ˙ z z < ˙ y
Assertion swoer φ R Er X

Proof

Step Hyp Ref Expression
1 swoer.1 R = X × X < ˙ < ˙ -1
2 swoer.2 φ y X z X y < ˙ z ¬ z < ˙ y
3 swoer.3 φ x X y X z X x < ˙ y x < ˙ z z < ˙ y
4 difss X × X < ˙ < ˙ -1 X × X
5 1 4 eqsstri R X × X
6 relxp Rel X × X
7 relss R X × X Rel X × X Rel R
8 5 6 7 mp2 Rel R
9 8 a1i φ Rel R
10 simpr φ u R v u R v
11 orcom u < ˙ v v < ˙ u v < ˙ u u < ˙ v
12 11 a1i φ u R v u < ˙ v v < ˙ u v < ˙ u u < ˙ v
13 12 notbid φ u R v ¬ u < ˙ v v < ˙ u ¬ v < ˙ u u < ˙ v
14 5 ssbri u R v u X × X v
15 14 adantl φ u R v u X × X v
16 brxp u X × X v u X v X
17 15 16 sylib φ u R v u X v X
18 1 brdifun u X v X u R v ¬ u < ˙ v v < ˙ u
19 17 18 syl φ u R v u R v ¬ u < ˙ v v < ˙ u
20 17 simprd φ u R v v X
21 17 simpld φ u R v u X
22 1 brdifun v X u X v R u ¬ v < ˙ u u < ˙ v
23 20 21 22 syl2anc φ u R v v R u ¬ v < ˙ u u < ˙ v
24 13 19 23 3bitr4d φ u R v u R v v R u
25 10 24 mpbid φ u R v v R u
26 simprl φ u R v v R w u R v
27 14 ad2antrl φ u R v v R w u X × X v
28 16 simplbi u X × X v u X
29 27 28 syl φ u R v v R w u X
30 16 simprbi u X × X v v X
31 27 30 syl φ u R v v R w v X
32 29 31 18 syl2anc φ u R v v R w u R v ¬ u < ˙ v v < ˙ u
33 26 32 mpbid φ u R v v R w ¬ u < ˙ v v < ˙ u
34 simprr φ u R v v R w v R w
35 5 brel v R w v X w X
36 35 simprd v R w w X
37 34 36 syl φ u R v v R w w X
38 1 brdifun v X w X v R w ¬ v < ˙ w w < ˙ v
39 31 37 38 syl2anc φ u R v v R w v R w ¬ v < ˙ w w < ˙ v
40 34 39 mpbid φ u R v v R w ¬ v < ˙ w w < ˙ v
41 simpl φ u R v v R w φ
42 3 swopolem φ u X w X v X u < ˙ w u < ˙ v v < ˙ w
43 41 29 37 31 42 syl13anc φ u R v v R w u < ˙ w u < ˙ v v < ˙ w
44 3 swopolem φ w X u X v X w < ˙ u w < ˙ v v < ˙ u
45 41 37 29 31 44 syl13anc φ u R v v R w w < ˙ u w < ˙ v v < ˙ u
46 orcom v < ˙ u w < ˙ v w < ˙ v v < ˙ u
47 45 46 syl6ibr φ u R v v R w w < ˙ u v < ˙ u w < ˙ v
48 43 47 orim12d φ u R v v R w u < ˙ w w < ˙ u u < ˙ v v < ˙ w v < ˙ u w < ˙ v
49 or4 u < ˙ v v < ˙ w v < ˙ u w < ˙ v u < ˙ v v < ˙ u v < ˙ w w < ˙ v
50 48 49 syl6ib φ u R v v R w u < ˙ w w < ˙ u u < ˙ v v < ˙ u v < ˙ w w < ˙ v
51 33 40 50 mtord φ u R v v R w ¬ u < ˙ w w < ˙ u
52 1 brdifun u X w X u R w ¬ u < ˙ w w < ˙ u
53 29 37 52 syl2anc φ u R v v R w u R w ¬ u < ˙ w w < ˙ u
54 51 53 mpbird φ u R v v R w u R w
55 2 3 swopo φ < ˙ Po X
56 poirr < ˙ Po X u X ¬ u < ˙ u
57 55 56 sylan φ u X ¬ u < ˙ u
58 pm1.2 u < ˙ u u < ˙ u u < ˙ u
59 57 58 nsyl φ u X ¬ u < ˙ u u < ˙ u
60 simpr φ u X u X
61 1 brdifun u X u X u R u ¬ u < ˙ u u < ˙ u
62 60 60 61 syl2anc φ u X u R u ¬ u < ˙ u u < ˙ u
63 59 62 mpbird φ u X u R u
64 5 ssbri u R u u X × X u
65 brxp u X × X u u X u X
66 65 simplbi u X × X u u X
67 64 66 syl u R u u X
68 67 adantl φ u R u u X
69 63 68 impbida φ u X u R u
70 9 25 54 69 iserd φ R Er X