Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
|
lencl |
|
3 |
|
1z |
|
4 |
|
nn0z |
|
5 |
|
zltp1le |
|
6 |
3 4 5
|
sylancr |
|
7 |
|
1p1e2 |
|
8 |
7
|
a1i |
|
9 |
8
|
breq1d |
|
10 |
9
|
biimpd |
|
11 |
6 10
|
sylbid |
|
12 |
11
|
imp |
|
13 |
|
2nn0 |
|
14 |
13
|
jctl |
|
15 |
14
|
adantr |
|
16 |
|
nn0sub |
|
17 |
15 16
|
syl |
|
18 |
12 17
|
mpbid |
|
19 |
2 18
|
sylan |
|
20 |
|
0red |
|
21 |
|
1red |
|
22 |
|
zre |
|
23 |
20 21 22
|
3jca |
|
24 |
|
0lt1 |
|
25 |
|
lttr |
|
26 |
25
|
expd |
|
27 |
23 24 26
|
mpisyl |
|
28 |
|
elnnz |
|
29 |
28
|
simplbi2 |
|
30 |
27 29
|
syld |
|
31 |
4 30
|
syl |
|
32 |
31
|
imp |
|
33 |
|
fzo0end |
|
34 |
32 33
|
syl |
|
35 |
|
nn0cn |
|
36 |
|
2cn |
|
37 |
36
|
a1i |
|
38 |
|
1cnd |
|
39 |
35 37 38
|
3jca |
|
40 |
|
1e2m1 |
|
41 |
40
|
a1i |
|
42 |
41
|
oveq2d |
|
43 |
|
subsub |
|
44 |
42 43
|
eqtrd |
|
45 |
39 44
|
syl |
|
46 |
45
|
eqcomd |
|
47 |
46
|
eleq1d |
|
48 |
47
|
adantr |
|
49 |
34 48
|
mpbird |
|
50 |
2 49
|
sylan |
|
51 |
1 19 50
|
3jca |
|
52 |
|
swrds2 |
|
53 |
51 52
|
syl |
|
54 |
35 36
|
jctir |
|
55 |
|
npcan |
|
56 |
55
|
eqcomd |
|
57 |
2 54 56
|
3syl |
|
58 |
57
|
adantr |
|
59 |
58
|
opeq2d |
|
60 |
59
|
oveq2d |
|
61 |
|
eqidd |
|
62 |
|
lsw |
|
63 |
39 43
|
syl |
|
64 |
63
|
eqcomd |
|
65 |
|
2m1e1 |
|
66 |
65
|
a1i |
|
67 |
66
|
oveq2d |
|
68 |
64 67
|
eqtrd |
|
69 |
2 68
|
syl |
|
70 |
69
|
eqcomd |
|
71 |
70
|
fveq2d |
|
72 |
62 71
|
eqtrd |
|
73 |
72
|
adantr |
|
74 |
61 73
|
s2eqd |
|
75 |
53 60 74
|
3eqtr4d |
|