Step |
Hyp |
Ref |
Expression |
1 |
|
swrdccatin2.l |
|
2 |
1
|
pfxccat3 |
|
3 |
2
|
imp |
|
4 |
|
lencl |
|
5 |
4
|
adantr |
|
6 |
1
|
eqcomi |
|
7 |
6
|
eleq1i |
|
8 |
|
elfz2nn0 |
|
9 |
|
iftrue |
|
10 |
9
|
adantl |
|
11 |
10
|
opeq2d |
|
12 |
11
|
oveq2d |
|
13 |
|
iftrue |
|
14 |
13
|
opeq1d |
|
15 |
14
|
oveq2d |
|
16 |
15
|
adantr |
|
17 |
|
simpr |
|
18 |
|
nn0z |
|
19 |
|
nn0z |
|
20 |
19
|
adantr |
|
21 |
|
zsubcl |
|
22 |
20 21
|
sylan |
|
23 |
|
nn0z |
|
24 |
23
|
adantl |
|
25 |
|
zsubcl |
|
26 |
24 25
|
sylan |
|
27 |
22 26
|
jca |
|
28 |
18 27
|
sylan2 |
|
29 |
17 28
|
anim12i |
|
30 |
|
3anass |
|
31 |
29 30
|
sylibr |
|
32 |
31
|
ad2antrl |
|
33 |
|
nn0re |
|
34 |
|
nn0re |
|
35 |
33 34
|
anim12i |
|
36 |
|
nn0re |
|
37 |
|
subge0 |
|
38 |
37
|
adantlr |
|
39 |
|
simpr |
|
40 |
39
|
adantr |
|
41 |
|
simpr |
|
42 |
|
simpl |
|
43 |
42
|
adantr |
|
44 |
|
letr |
|
45 |
40 41 43 44
|
syl3anc |
|
46 |
45
|
expcomd |
|
47 |
38 46
|
sylbid |
|
48 |
47
|
com23 |
|
49 |
35 36 48
|
syl2an |
|
50 |
49
|
adantl |
|
51 |
50
|
imp |
|
52 |
51
|
impcom |
|
53 |
34
|
adantl |
|
54 |
53
|
adantr |
|
55 |
33
|
adantr |
|
56 |
55
|
adantr |
|
57 |
36
|
adantl |
|
58 |
54 56 57
|
3jca |
|
59 |
58
|
adantl |
|
60 |
59
|
ad2antrl |
|
61 |
|
lesub1 |
|
62 |
60 61
|
syl |
|
63 |
52 62
|
mpbid |
|
64 |
|
swrdlend |
|
65 |
32 63 64
|
sylc |
|
66 |
16 65
|
eqtrd |
|
67 |
|
iffalse |
|
68 |
67
|
opeq1d |
|
69 |
68
|
oveq2d |
|
70 |
17
|
adantr |
|
71 |
70
|
adantr |
|
72 |
|
0zd |
|
73 |
24 18 25
|
syl2an |
|
74 |
73
|
adantl |
|
75 |
74
|
adantr |
|
76 |
71 72 75
|
3jca |
|
77 |
53 36
|
anim12i |
|
78 |
77
|
adantl |
|
79 |
|
suble0 |
|
80 |
78 79
|
syl |
|
81 |
80
|
biimpar |
|
82 |
|
swrdlend |
|
83 |
76 81 82
|
sylc |
|
84 |
69 83
|
sylan9eq |
|
85 |
66 84
|
pm2.61ian |
|
86 |
12 85
|
oveq12d |
|
87 |
|
swrdcl |
|
88 |
|
ccatrid |
|
89 |
87 88
|
syl |
|
90 |
89
|
adantr |
|
91 |
90
|
adantr |
|
92 |
91
|
adantr |
|
93 |
86 92
|
eqtrd |
|
94 |
|
iffalse |
|
95 |
94
|
3ad2ant2 |
|
96 |
95
|
opeq2d |
|
97 |
96
|
oveq2d |
|
98 |
|
simpl |
|
99 |
98 20 18
|
3anim123i |
|
100 |
99
|
3expb |
|
101 |
|
swrdlend |
|
102 |
100 101
|
syl |
|
103 |
102
|
imp |
|
104 |
103
|
3adant2 |
|
105 |
97 104
|
eqtrd |
|
106 |
55 36 37
|
syl2an |
|
107 |
106
|
biimprd |
|
108 |
107
|
adantl |
|
109 |
108
|
imp |
|
110 |
109
|
3adant2 |
|
111 |
110 14
|
syl |
|
112 |
111
|
oveq2d |
|
113 |
105 112
|
oveq12d |
|
114 |
|
swrdcl |
|
115 |
114
|
adantl |
|
116 |
|
ccatlid |
|
117 |
115 116
|
syl |
|
118 |
117
|
adantr |
|
119 |
118
|
3ad2ant1 |
|
120 |
113 119
|
eqtrd |
|
121 |
94
|
3ad2ant2 |
|
122 |
121
|
opeq2d |
|
123 |
122
|
oveq2d |
|
124 |
33 36 37
|
syl2an |
|
125 |
124
|
adantlr |
|
126 |
125
|
adantl |
|
127 |
126
|
biimpd |
|
128 |
127
|
con3dimp |
|
129 |
128
|
3adant2 |
|
130 |
129 67
|
syl |
|
131 |
130
|
opeq1d |
|
132 |
131
|
oveq2d |
|
133 |
70
|
3ad2ant1 |
|
134 |
|
simplrr |
|
135 |
|
simprlr |
|
136 |
135
|
adantr |
|
137 |
|
ltnle |
|
138 |
|
ltle |
|
139 |
137 138
|
sylbird |
|
140 |
36 53 139
|
syl2anr |
|
141 |
140
|
adantl |
|
142 |
141
|
imp |
|
143 |
|
nn0sub2 |
|
144 |
134 136 142 143
|
syl3anc |
|
145 |
144
|
3adant3 |
|
146 |
133 145
|
jca |
|
147 |
|
pfxval |
|
148 |
146 147
|
syl |
|
149 |
132 148
|
eqtr4d |
|
150 |
123 149
|
oveq12d |
|
151 |
93 120 150
|
2if2 |
|
152 |
151
|
exp32 |
|
153 |
152
|
com12 |
|
154 |
153
|
3adant3 |
|
155 |
8 154
|
sylbi |
|
156 |
155
|
adantr |
|
157 |
156
|
com13 |
|
158 |
7 157
|
sylbi |
|
159 |
5 158
|
mpcom |
|
160 |
159
|
imp |
|
161 |
3 160
|
eqtr4d |
|
162 |
161
|
ex |
|