Step |
Hyp |
Ref |
Expression |
1 |
|
ccatcl |
|
2 |
|
swrdcl |
|
3 |
|
wrdfn |
|
4 |
1 2 3
|
3syl |
|
5 |
|
lencl |
|
6 |
|
nn0uz |
|
7 |
5 6
|
eleqtrdi |
|
8 |
7
|
adantr |
|
9 |
5
|
nn0zd |
|
10 |
9
|
uzidd |
|
11 |
|
lencl |
|
12 |
|
uzaddcl |
|
13 |
10 11 12
|
syl2an |
|
14 |
|
elfzuzb |
|
15 |
8 13 14
|
sylanbrc |
|
16 |
|
nn0addcl |
|
17 |
5 11 16
|
syl2an |
|
18 |
17 6
|
eleqtrdi |
|
19 |
17
|
nn0zd |
|
20 |
19
|
uzidd |
|
21 |
|
elfzuzb |
|
22 |
18 20 21
|
sylanbrc |
|
23 |
|
ccatlen |
|
24 |
23
|
oveq2d |
|
25 |
22 24
|
eleqtrrd |
|
26 |
|
swrdlen |
|
27 |
1 15 25 26
|
syl3anc |
|
28 |
5
|
nn0cnd |
|
29 |
11
|
nn0cnd |
|
30 |
|
pncan2 |
|
31 |
28 29 30
|
syl2an |
|
32 |
27 31
|
eqtrd |
|
33 |
32
|
oveq2d |
|
34 |
33
|
fneq2d |
|
35 |
4 34
|
mpbid |
|
36 |
|
wrdfn |
|
37 |
36
|
adantl |
|
38 |
1 15 25
|
3jca |
|
39 |
31
|
oveq2d |
|
40 |
39
|
eleq2d |
|
41 |
40
|
biimpar |
|
42 |
|
swrdfv |
|
43 |
38 41 42
|
syl2an2r |
|
44 |
|
ccatval3 |
|
45 |
44
|
3expa |
|
46 |
43 45
|
eqtrd |
|
47 |
35 37 46
|
eqfnfvd |
|