Metamath Proof Explorer


Theorem swrdccatfn

Description: The subword of a concatenation as function. (Contributed by Alexander van der Vekens, 27-May-2018)

Ref Expression
Assertion swrdccatfn A Word V B Word V M 0 N N 0 A + B A ++ B substr M N Fn 0 ..^ N M

Proof

Step Hyp Ref Expression
1 ccatcl A Word V B Word V A ++ B Word V
2 1 adantr A Word V B Word V M 0 N N 0 A + B A ++ B Word V
3 simprl A Word V B Word V M 0 N N 0 A + B M 0 N
4 ccatlen A Word V B Word V A ++ B = A + B
5 4 oveq2d A Word V B Word V 0 A ++ B = 0 A + B
6 5 eleq2d A Word V B Word V N 0 A ++ B N 0 A + B
7 6 biimpar A Word V B Word V N 0 A + B N 0 A ++ B
8 7 adantrl A Word V B Word V M 0 N N 0 A + B N 0 A ++ B
9 swrdvalfn A ++ B Word V M 0 N N 0 A ++ B A ++ B substr M N Fn 0 ..^ N M
10 2 3 8 9 syl3anc A Word V B Word V M 0 N N 0 A + B A ++ B substr M N Fn 0 ..^ N M