Metamath Proof Explorer


Theorem swrdccatin1d

Description: The subword of a concatenation of two words within the first of the concatenated words. (Contributed by AV, 31-May-2018) (Revised by Mario Carneiro/AV, 21-Oct-2018)

Ref Expression
Hypotheses swrdccatind.l φ A = L
swrdccatind.w φ A Word V B Word V
swrdccatin1d.1 φ M 0 N
swrdccatin1d.2 φ N 0 L
Assertion swrdccatin1d φ A ++ B substr M N = A substr M N

Proof

Step Hyp Ref Expression
1 swrdccatind.l φ A = L
2 swrdccatind.w φ A Word V B Word V
3 swrdccatin1d.1 φ M 0 N
4 swrdccatin1d.2 φ N 0 L
5 oveq2 A = L 0 A = 0 L
6 5 eleq2d A = L N 0 A N 0 L
7 4 6 syl5ibr A = L φ N 0 A
8 1 7 mpcom φ N 0 A
9 3 8 jca φ M 0 N N 0 A
10 swrdccatin1 A Word V B Word V M 0 N N 0 A A ++ B substr M N = A substr M N
11 2 9 10 sylc φ A ++ B substr M N = A substr M N