Metamath Proof Explorer


Theorem swrdf

Description: A subword of a word is a function from a half-open range of nonnegative integers of the same length as the subword to the set of symbols for the original word. (Contributed by AV, 13-Nov-2018)

Ref Expression
Assertion swrdf W Word V M 0 N N 0 W W substr M N : 0 ..^ N M V

Proof

Step Hyp Ref Expression
1 swrdcl W Word V W substr M N Word V
2 wrdf W substr M N Word V W substr M N : 0 ..^ W substr M N V
3 1 2 syl W Word V W substr M N : 0 ..^ W substr M N V
4 3 3ad2ant1 W Word V M 0 N N 0 W W substr M N : 0 ..^ W substr M N V
5 swrdlen W Word V M 0 N N 0 W W substr M N = N M
6 5 oveq2d W Word V M 0 N N 0 W 0 ..^ W substr M N = 0 ..^ N M
7 6 feq2d W Word V M 0 N N 0 W W substr M N : 0 ..^ W substr M N V W substr M N : 0 ..^ N M V
8 4 7 mpbid W Word V M 0 N N 0 W W substr M N : 0 ..^ N M V