Step |
Hyp |
Ref |
Expression |
1 |
|
swrdf1.w |
|
2 |
|
swrdf1.m |
|
3 |
|
swrdf1.n |
|
4 |
|
swrdf1.1 |
|
5 |
|
swrdf |
|
6 |
1 2 3 5
|
syl3anc |
|
7 |
6
|
ffdmd |
|
8 |
|
fzossz |
|
9 |
|
simpllr |
|
10 |
6
|
fdmd |
|
11 |
10
|
ad3antrrr |
|
12 |
9 11
|
eleqtrd |
|
13 |
8 12
|
sselid |
|
14 |
13
|
zcnd |
|
15 |
|
simplr |
|
16 |
15 11
|
eleqtrd |
|
17 |
8 16
|
sselid |
|
18 |
17
|
zcnd |
|
19 |
2
|
elfzelzd |
|
20 |
19
|
ad3antrrr |
|
21 |
20
|
zcnd |
|
22 |
4
|
ad3antrrr |
|
23 |
|
elfzuz |
|
24 |
|
fzoss1 |
|
25 |
2 23 24
|
3syl |
|
26 |
|
elfzuz3 |
|
27 |
|
fzoss2 |
|
28 |
3 26 27
|
3syl |
|
29 |
25 28
|
sstrd |
|
30 |
29
|
ad3antrrr |
|
31 |
3
|
elfzelzd |
|
32 |
31
|
ad3antrrr |
|
33 |
|
fzoaddel2 |
|
34 |
12 32 20 33
|
syl3anc |
|
35 |
30 34
|
sseldd |
|
36 |
|
wrddm |
|
37 |
1 36
|
syl |
|
38 |
37
|
ad3antrrr |
|
39 |
35 38
|
eleqtrrd |
|
40 |
|
fzoaddel2 |
|
41 |
16 32 20 40
|
syl3anc |
|
42 |
30 41
|
sseldd |
|
43 |
42 38
|
eleqtrrd |
|
44 |
|
simpr |
|
45 |
1
|
ad3antrrr |
|
46 |
2
|
ad3antrrr |
|
47 |
3
|
ad3antrrr |
|
48 |
|
swrdfv |
|
49 |
45 46 47 12 48
|
syl31anc |
|
50 |
|
swrdfv |
|
51 |
45 46 47 16 50
|
syl31anc |
|
52 |
44 49 51
|
3eqtr3d |
|
53 |
|
f1veqaeq |
|
54 |
53
|
anassrs |
|
55 |
54
|
imp |
|
56 |
22 39 43 52 55
|
syl1111anc |
|
57 |
14 18 21 56
|
addcan2ad |
|
58 |
57
|
ex |
|
59 |
58
|
anasss |
|
60 |
59
|
ralrimivva |
|
61 |
|
dff13 |
|
62 |
7 60 61
|
sylanbrc |
|