Metamath Proof Explorer


Theorem swrdfv

Description: A symbol in an extracted subword, indexed using the subword's indices. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Assertion swrdfv S Word A F 0 L L 0 S X 0 ..^ L F S substr F L X = S X + F

Proof

Step Hyp Ref Expression
1 swrdval2 S Word A F 0 L L 0 S S substr F L = x 0 ..^ L F S x + F
2 1 fveq1d S Word A F 0 L L 0 S S substr F L X = x 0 ..^ L F S x + F X
3 fvoveq1 x = X S x + F = S X + F
4 eqid x 0 ..^ L F S x + F = x 0 ..^ L F S x + F
5 fvex S X + F V
6 3 4 5 fvmpt X 0 ..^ L F x 0 ..^ L F S x + F X = S X + F
7 2 6 sylan9eq S Word A F 0 L L 0 S X 0 ..^ L F S substr F L X = S X + F