Metamath Proof Explorer


Theorem swrdfv0

Description: The first symbol in an extracted subword. (Contributed by AV, 27-Apr-2022)

Ref Expression
Assertion swrdfv0 S Word A F 0 ..^ L L 0 S S substr F L 0 = S F

Proof

Step Hyp Ref Expression
1 elfzofz F 0 ..^ L F 0 L
2 1 3anim2i S Word A F 0 ..^ L L 0 S S Word A F 0 L L 0 S
3 fzonnsub F 0 ..^ L L F
4 3 3ad2ant2 S Word A F 0 ..^ L L 0 S L F
5 lbfzo0 0 0 ..^ L F L F
6 4 5 sylibr S Word A F 0 ..^ L L 0 S 0 0 ..^ L F
7 swrdfv S Word A F 0 L L 0 S 0 0 ..^ L F S substr F L 0 = S 0 + F
8 2 6 7 syl2anc S Word A F 0 ..^ L L 0 S S substr F L 0 = S 0 + F
9 elfzoelz F 0 ..^ L F
10 9 zcnd F 0 ..^ L F
11 10 addid2d F 0 ..^ L 0 + F = F
12 11 fveq2d F 0 ..^ L S 0 + F = S F
13 12 3ad2ant2 S Word A F 0 ..^ L L 0 S S 0 + F = S F
14 8 13 eqtrd S Word A F 0 ..^ L L 0 S S substr F L 0 = S F