Database
REAL AND COMPLEX NUMBERS
Words over a set
Subwords/substrings
swrdfv0
Next ⟩
swrdf
Metamath Proof Explorer
Ascii
Unicode
Theorem
swrdfv0
Description:
The first symbol in an extracted subword.
(Contributed by
AV
, 27-Apr-2022)
Ref
Expression
Assertion
swrdfv0
⊢
S
∈
Word
A
∧
F
∈
0
..^
L
∧
L
∈
0
…
S
→
S
substr
F
L
⁡
0
=
S
⁡
F
Proof
Step
Hyp
Ref
Expression
1
elfzofz
⊢
F
∈
0
..^
L
→
F
∈
0
…
L
2
1
3anim2i
⊢
S
∈
Word
A
∧
F
∈
0
..^
L
∧
L
∈
0
…
S
→
S
∈
Word
A
∧
F
∈
0
…
L
∧
L
∈
0
…
S
3
fzonnsub
⊢
F
∈
0
..^
L
→
L
−
F
∈
ℕ
4
3
3ad2ant2
⊢
S
∈
Word
A
∧
F
∈
0
..^
L
∧
L
∈
0
…
S
→
L
−
F
∈
ℕ
5
lbfzo0
⊢
0
∈
0
..^
L
−
F
↔
L
−
F
∈
ℕ
6
4
5
sylibr
⊢
S
∈
Word
A
∧
F
∈
0
..^
L
∧
L
∈
0
…
S
→
0
∈
0
..^
L
−
F
7
swrdfv
⊢
S
∈
Word
A
∧
F
∈
0
…
L
∧
L
∈
0
…
S
∧
0
∈
0
..^
L
−
F
→
S
substr
F
L
⁡
0
=
S
⁡
0
+
F
8
2
6
7
syl2anc
⊢
S
∈
Word
A
∧
F
∈
0
..^
L
∧
L
∈
0
…
S
→
S
substr
F
L
⁡
0
=
S
⁡
0
+
F
9
elfzoelz
⊢
F
∈
0
..^
L
→
F
∈
ℤ
10
9
zcnd
⊢
F
∈
0
..^
L
→
F
∈
ℂ
11
10
addid2d
⊢
F
∈
0
..^
L
→
0
+
F
=
F
12
11
fveq2d
⊢
F
∈
0
..^
L
→
S
⁡
0
+
F
=
S
⁡
F
13
12
3ad2ant2
⊢
S
∈
Word
A
∧
F
∈
0
..^
L
∧
L
∈
0
…
S
→
S
⁡
0
+
F
=
S
⁡
F
14
8
13
eqtrd
⊢
S
∈
Word
A
∧
F
∈
0
..^
L
∧
L
∈
0
…
S
→
S
substr
F
L
⁡
0
=
S
⁡
F