Metamath Proof Explorer


Theorem swrdlen

Description: Length of an extracted subword. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Assertion swrdlen S Word A F 0 L L 0 S S substr F L = L F

Proof

Step Hyp Ref Expression
1 fvex S x + F V
2 eqid x 0 ..^ L F S x + F = x 0 ..^ L F S x + F
3 1 2 fnmpti x 0 ..^ L F S x + F Fn 0 ..^ L F
4 swrdval2 S Word A F 0 L L 0 S S substr F L = x 0 ..^ L F S x + F
5 4 fneq1d S Word A F 0 L L 0 S S substr F L Fn 0 ..^ L F x 0 ..^ L F S x + F Fn 0 ..^ L F
6 3 5 mpbiri S Word A F 0 L L 0 S S substr F L Fn 0 ..^ L F
7 hashfn S substr F L Fn 0 ..^ L F S substr F L = 0 ..^ L F
8 6 7 syl S Word A F 0 L L 0 S S substr F L = 0 ..^ L F
9 fznn0sub F 0 L L F 0
10 9 3ad2ant2 S Word A F 0 L L 0 S L F 0
11 hashfzo0 L F 0 0 ..^ L F = L F
12 10 11 syl S Word A F 0 L L 0 S 0 ..^ L F = L F
13 8 12 eqtrd S Word A F 0 L L 0 S S substr F L = L F