Database
REAL AND COMPLEX NUMBERS
Words over a set
Subwords/substrings
swrdlen
Next ⟩
swrdfv
Metamath Proof Explorer
Ascii
Unicode
Theorem
swrdlen
Description:
Length of an extracted subword.
(Contributed by
Stefan O'Rear
, 16-Aug-2015)
Ref
Expression
Assertion
swrdlen
⊢
S
∈
Word
A
∧
F
∈
0
…
L
∧
L
∈
0
…
S
→
S
substr
F
L
=
L
−
F
Proof
Step
Hyp
Ref
Expression
1
fvex
⊢
S
⁡
x
+
F
∈
V
2
eqid
⊢
x
∈
0
..^
L
−
F
⟼
S
⁡
x
+
F
=
x
∈
0
..^
L
−
F
⟼
S
⁡
x
+
F
3
1
2
fnmpti
⊢
x
∈
0
..^
L
−
F
⟼
S
⁡
x
+
F
Fn
0
..^
L
−
F
4
swrdval2
⊢
S
∈
Word
A
∧
F
∈
0
…
L
∧
L
∈
0
…
S
→
S
substr
F
L
=
x
∈
0
..^
L
−
F
⟼
S
⁡
x
+
F
5
4
fneq1d
⊢
S
∈
Word
A
∧
F
∈
0
…
L
∧
L
∈
0
…
S
→
S
substr
F
L
Fn
0
..^
L
−
F
↔
x
∈
0
..^
L
−
F
⟼
S
⁡
x
+
F
Fn
0
..^
L
−
F
6
3
5
mpbiri
⊢
S
∈
Word
A
∧
F
∈
0
…
L
∧
L
∈
0
…
S
→
S
substr
F
L
Fn
0
..^
L
−
F
7
hashfn
⊢
S
substr
F
L
Fn
0
..^
L
−
F
→
S
substr
F
L
=
0
..^
L
−
F
8
6
7
syl
⊢
S
∈
Word
A
∧
F
∈
0
…
L
∧
L
∈
0
…
S
→
S
substr
F
L
=
0
..^
L
−
F
9
fznn0sub
⊢
F
∈
0
…
L
→
L
−
F
∈
ℕ
0
10
9
3ad2ant2
⊢
S
∈
Word
A
∧
F
∈
0
…
L
∧
L
∈
0
…
S
→
L
−
F
∈
ℕ
0
11
hashfzo0
⊢
L
−
F
∈
ℕ
0
→
0
..^
L
−
F
=
L
−
F
12
10
11
syl
⊢
S
∈
Word
A
∧
F
∈
0
…
L
∧
L
∈
0
…
S
→
0
..^
L
−
F
=
L
−
F
13
8
12
eqtrd
⊢
S
∈
Word
A
∧
F
∈
0
…
L
∧
L
∈
0
…
S
→
S
substr
F
L
=
L
−
F