Metamath Proof Explorer


Theorem swrdlen2

Description: Length of an extracted subword. (Contributed by AV, 5-May-2020)

Ref Expression
Assertion swrdlen2 S Word V F 0 L F L S S substr F L = L F

Proof

Step Hyp Ref Expression
1 simp1 S Word V F 0 L F L S S Word V
2 simpl F 0 L F F 0
3 eluznn0 F 0 L F L 0
4 eluzle L F F L
5 4 adantl F 0 L F F L
6 2 3 5 3jca F 0 L F F 0 L 0 F L
7 6 3ad2ant2 S Word V F 0 L F L S F 0 L 0 F L
8 elfz2nn0 F 0 L F 0 L 0 F L
9 7 8 sylibr S Word V F 0 L F L S F 0 L
10 3 3ad2ant2 S Word V F 0 L F L S L 0
11 lencl S Word V S 0
12 11 3ad2ant1 S Word V F 0 L F L S S 0
13 simp3 S Word V F 0 L F L S L S
14 10 12 13 3jca S Word V F 0 L F L S L 0 S 0 L S
15 elfz2nn0 L 0 S L 0 S 0 L S
16 14 15 sylibr S Word V F 0 L F L S L 0 S
17 swrdlen S Word V F 0 L L 0 S S substr F L = L F
18 1 9 16 17 syl3anc S Word V F 0 L F L S S substr F L = L F