Database
REAL AND COMPLEX NUMBERS
Words over a set
Subwords/substrings
swrdlen2
Next ⟩
swrdfv2
Metamath Proof Explorer
Ascii
Unicode
Theorem
swrdlen2
Description:
Length of an extracted subword.
(Contributed by
AV
, 5-May-2020)
Ref
Expression
Assertion
swrdlen2
⊢
S
∈
Word
V
∧
F
∈
ℕ
0
∧
L
∈
ℤ
≥
F
∧
L
≤
S
→
S
substr
F
L
=
L
−
F
Proof
Step
Hyp
Ref
Expression
1
simp1
⊢
S
∈
Word
V
∧
F
∈
ℕ
0
∧
L
∈
ℤ
≥
F
∧
L
≤
S
→
S
∈
Word
V
2
simpl
⊢
F
∈
ℕ
0
∧
L
∈
ℤ
≥
F
→
F
∈
ℕ
0
3
eluznn0
⊢
F
∈
ℕ
0
∧
L
∈
ℤ
≥
F
→
L
∈
ℕ
0
4
eluzle
⊢
L
∈
ℤ
≥
F
→
F
≤
L
5
4
adantl
⊢
F
∈
ℕ
0
∧
L
∈
ℤ
≥
F
→
F
≤
L
6
2
3
5
3jca
⊢
F
∈
ℕ
0
∧
L
∈
ℤ
≥
F
→
F
∈
ℕ
0
∧
L
∈
ℕ
0
∧
F
≤
L
7
6
3ad2ant2
⊢
S
∈
Word
V
∧
F
∈
ℕ
0
∧
L
∈
ℤ
≥
F
∧
L
≤
S
→
F
∈
ℕ
0
∧
L
∈
ℕ
0
∧
F
≤
L
8
elfz2nn0
⊢
F
∈
0
…
L
↔
F
∈
ℕ
0
∧
L
∈
ℕ
0
∧
F
≤
L
9
7
8
sylibr
⊢
S
∈
Word
V
∧
F
∈
ℕ
0
∧
L
∈
ℤ
≥
F
∧
L
≤
S
→
F
∈
0
…
L
10
3
3ad2ant2
⊢
S
∈
Word
V
∧
F
∈
ℕ
0
∧
L
∈
ℤ
≥
F
∧
L
≤
S
→
L
∈
ℕ
0
11
lencl
⊢
S
∈
Word
V
→
S
∈
ℕ
0
12
11
3ad2ant1
⊢
S
∈
Word
V
∧
F
∈
ℕ
0
∧
L
∈
ℤ
≥
F
∧
L
≤
S
→
S
∈
ℕ
0
13
simp3
⊢
S
∈
Word
V
∧
F
∈
ℕ
0
∧
L
∈
ℤ
≥
F
∧
L
≤
S
→
L
≤
S
14
10
12
13
3jca
⊢
S
∈
Word
V
∧
F
∈
ℕ
0
∧
L
∈
ℤ
≥
F
∧
L
≤
S
→
L
∈
ℕ
0
∧
S
∈
ℕ
0
∧
L
≤
S
15
elfz2nn0
⊢
L
∈
0
…
S
↔
L
∈
ℕ
0
∧
S
∈
ℕ
0
∧
L
≤
S
16
14
15
sylibr
⊢
S
∈
Word
V
∧
F
∈
ℕ
0
∧
L
∈
ℤ
≥
F
∧
L
≤
S
→
L
∈
0
…
S
17
swrdlen
⊢
S
∈
Word
V
∧
F
∈
0
…
L
∧
L
∈
0
…
S
→
S
substr
F
L
=
L
−
F
18
1
9
16
17
syl3anc
⊢
S
∈
Word
V
∧
F
∈
ℕ
0
∧
L
∈
ℤ
≥
F
∧
L
≤
S
→
S
substr
F
L
=
L
−
F