Metamath Proof Explorer


Theorem swrdnd0

Description: The value of a subword operation for inproper arguments is the empty set. (Contributed by AV, 2-Dec-2022)

Ref Expression
Assertion swrdnd0 S Word V ¬ F 0 L L 0 S S substr F L =

Proof

Step Hyp Ref Expression
1 ianor ¬ F 0 L L 0 S ¬ F 0 L ¬ L 0 S
2 3ianor ¬ F 0 L 0 F L ¬ F 0 ¬ L 0 ¬ F L
3 elfz2nn0 F 0 L F 0 L 0 F L
4 2 3 xchnxbir ¬ F 0 L ¬ F 0 ¬ L 0 ¬ F L
5 3ianor ¬ L 0 S 0 L S ¬ L 0 ¬ S 0 ¬ L S
6 elfz2nn0 L 0 S L 0 S 0 L S
7 5 6 xchnxbir ¬ L 0 S ¬ L 0 ¬ S 0 ¬ L S
8 4 7 orbi12i ¬ F 0 L ¬ L 0 S ¬ F 0 ¬ L 0 ¬ F L ¬ L 0 ¬ S 0 ¬ L S
9 1 8 bitri ¬ F 0 L L 0 S ¬ F 0 ¬ L 0 ¬ F L ¬ L 0 ¬ S 0 ¬ L S
10 df-3or ¬ F 0 ¬ L 0 ¬ F L ¬ F 0 ¬ L 0 ¬ F L
11 ianor ¬ F 0 L 0 ¬ F 0 ¬ L 0
12 swrdnnn0nd S Word V ¬ F 0 L 0 S substr F L =
13 12 expcom ¬ F 0 L 0 S Word V S substr F L =
14 11 13 sylbir ¬ F 0 ¬ L 0 S Word V S substr F L =
15 anor F 0 L 0 ¬ ¬ F 0 ¬ L 0
16 nn0re L 0 L
17 nn0re F 0 F
18 ltnle L F L < F ¬ F L
19 16 17 18 syl2anr F 0 L 0 L < F ¬ F L
20 nn0z F 0 F
21 nn0z L 0 L
22 20 21 anim12i F 0 L 0 F L
23 22 anim2i S Word V F 0 L 0 S Word V F L
24 3anass S Word V F L S Word V F L
25 23 24 sylibr S Word V F 0 L 0 S Word V F L
26 25 adantr S Word V F 0 L 0 L < F S Word V F L
27 17 16 anim12ci F 0 L 0 L F
28 27 adantl S Word V F 0 L 0 L F
29 ltle L F L < F L F
30 28 29 syl S Word V F 0 L 0 L < F L F
31 30 imp S Word V F 0 L 0 L < F L F
32 31 3mix2d S Word V F 0 L 0 L < F F < 0 L F S < L
33 swrdnd S Word V F L F < 0 L F S < L S substr F L =
34 26 32 33 sylc S Word V F 0 L 0 L < F S substr F L =
35 34 ex S Word V F 0 L 0 L < F S substr F L =
36 35 expcom F 0 L 0 S Word V L < F S substr F L =
37 36 com23 F 0 L 0 L < F S Word V S substr F L =
38 19 37 sylbird F 0 L 0 ¬ F L S Word V S substr F L =
39 15 38 sylbir ¬ ¬ F 0 ¬ L 0 ¬ F L S Word V S substr F L =
40 39 imp ¬ ¬ F 0 ¬ L 0 ¬ F L S Word V S substr F L =
41 14 40 jaoi3 ¬ F 0 ¬ L 0 ¬ F L S Word V S substr F L =
42 10 41 sylbi ¬ F 0 ¬ L 0 ¬ F L S Word V S substr F L =
43 3anor F 0 L 0 F L ¬ ¬ F 0 ¬ L 0 ¬ F L
44 pm2.24 L 0 ¬ L 0 S Word V S substr F L =
45 44 3ad2ant2 F 0 L 0 F L ¬ L 0 S Word V S substr F L =
46 45 com12 ¬ L 0 F 0 L 0 F L S Word V S substr F L =
47 pm2.24 S 0 ¬ S 0 S substr F L =
48 lencl S Word V S 0
49 47 48 syl11 ¬ S 0 S Word V S substr F L =
50 49 a1d ¬ S 0 F 0 L 0 F L S Word V S substr F L =
51 48 nn0red S Word V S
52 16 3ad2ant2 F 0 L 0 F L L
53 ltnle S L S < L ¬ L S
54 51 52 53 syl2anr F 0 L 0 F L S Word V S < L ¬ L S
55 simpr F 0 L 0 F L S Word V S Word V
56 20 3ad2ant1 F 0 L 0 F L F
57 56 adantr F 0 L 0 F L S Word V F
58 21 3ad2ant2 F 0 L 0 F L L
59 58 adantr F 0 L 0 F L S Word V L
60 55 57 59 3jca F 0 L 0 F L S Word V S Word V F L
61 3mix3 S < L F < 0 L F S < L
62 60 61 33 syl2im F 0 L 0 F L S Word V S < L S substr F L =
63 54 62 sylbird F 0 L 0 F L S Word V ¬ L S S substr F L =
64 63 com12 ¬ L S F 0 L 0 F L S Word V S substr F L =
65 64 expd ¬ L S F 0 L 0 F L S Word V S substr F L =
66 46 50 65 3jaoi ¬ L 0 ¬ S 0 ¬ L S F 0 L 0 F L S Word V S substr F L =
67 43 66 syl5bir ¬ L 0 ¬ S 0 ¬ L S ¬ ¬ F 0 ¬ L 0 ¬ F L S Word V S substr F L =
68 67 impcom ¬ ¬ F 0 ¬ L 0 ¬ F L ¬ L 0 ¬ S 0 ¬ L S S Word V S substr F L =
69 42 68 jaoi3 ¬ F 0 ¬ L 0 ¬ F L ¬ L 0 ¬ S 0 ¬ L S S Word V S substr F L =
70 69 com12 S Word V ¬ F 0 ¬ L 0 ¬ F L ¬ L 0 ¬ S 0 ¬ L S S substr F L =
71 9 70 syl5bi S Word V ¬ F 0 L L 0 S S substr F L =