Metamath Proof Explorer


Theorem swrdnd2

Description: Value of the subword extractor outside its intended domain. (Contributed by Alexander van der Vekens, 24-May-2018)

Ref Expression
Assertion swrdnd2 W Word V A B B A W A B 0 W substr A B =

Proof

Step Hyp Ref Expression
1 3orass B A W A B 0 B A W A B 0
2 pm2.24 B A ¬ B A W Word V A B W substr A B =
3 swrdval W Word V A B W substr A B = if A ..^ B dom W x 0 ..^ B A W x + A
4 3 ad2antrr W Word V A B W A B 0 ¬ B A W substr A B = if A ..^ B dom W x 0 ..^ B A W x + A
5 wrddm W Word V dom W = 0 ..^ W
6 lencl W Word V W 0
7 3anass W 0 A B W 0 A B
8 ssfzoulel W 0 A B W A B 0 A ..^ B 0 ..^ W B A
9 8 imp W 0 A B W A B 0 A ..^ B 0 ..^ W B A
10 7 9 sylanbr W 0 A B W A B 0 A ..^ B 0 ..^ W B A
11 10 con3dimp W 0 A B W A B 0 ¬ B A ¬ A ..^ B 0 ..^ W
12 sseq2 dom W = 0 ..^ W A ..^ B dom W A ..^ B 0 ..^ W
13 12 notbid dom W = 0 ..^ W ¬ A ..^ B dom W ¬ A ..^ B 0 ..^ W
14 11 13 syl5ibr dom W = 0 ..^ W W 0 A B W A B 0 ¬ B A ¬ A ..^ B dom W
15 14 exp5j dom W = 0 ..^ W W 0 A B W A B 0 ¬ B A ¬ A ..^ B dom W
16 5 6 15 sylc W Word V A B W A B 0 ¬ B A ¬ A ..^ B dom W
17 16 3impib W Word V A B W A B 0 ¬ B A ¬ A ..^ B dom W
18 17 imp31 W Word V A B W A B 0 ¬ B A ¬ A ..^ B dom W
19 18 iffalsed W Word V A B W A B 0 ¬ B A if A ..^ B dom W x 0 ..^ B A W x + A =
20 4 19 eqtrd W Word V A B W A B 0 ¬ B A W substr A B =
21 20 ex W Word V A B W A B 0 ¬ B A W substr A B =
22 21 expcom W A B 0 W Word V A B ¬ B A W substr A B =
23 22 com23 W A B 0 ¬ B A W Word V A B W substr A B =
24 2 23 jaoi B A W A B 0 ¬ B A W Word V A B W substr A B =
25 swrdlend W Word V A B B A W substr A B =
26 25 com12 B A W Word V A B W substr A B =
27 24 26 pm2.61d2 B A W A B 0 W Word V A B W substr A B =
28 1 27 sylbi B A W A B 0 W Word V A B W substr A B =
29 28 com12 W Word V A B B A W A B 0 W substr A B =