Metamath Proof Explorer


Theorem swrdnnn0nd

Description: The value of a subword operation for arguments not being nonnegative integers is the empty set. (Contributed by AV, 2-Dec-2022)

Ref Expression
Assertion swrdnnn0nd S Word V ¬ F 0 L 0 S substr F L =

Proof

Step Hyp Ref Expression
1 ianor ¬ F 0 L 0 ¬ F 0 ¬ L 0
2 ianor ¬ F 0 F ¬ F ¬ 0 F
3 elnn0z F 0 F 0 F
4 2 3 xchnxbir ¬ F 0 ¬ F ¬ 0 F
5 ianor ¬ L 0 L ¬ L ¬ 0 L
6 elnn0z L 0 L 0 L
7 5 6 xchnxbir ¬ L 0 ¬ L ¬ 0 L
8 4 7 orbi12i ¬ F 0 ¬ L 0 ¬ F ¬ 0 F ¬ L ¬ 0 L
9 or4 ¬ F ¬ 0 F ¬ L ¬ 0 L ¬ F ¬ L ¬ 0 F ¬ 0 L
10 ianor ¬ F L ¬ F ¬ L
11 10 bicomi ¬ F ¬ L ¬ F L
12 11 orbi1i ¬ F ¬ L ¬ 0 F ¬ 0 L ¬ F L ¬ 0 F ¬ 0 L
13 9 12 bitri ¬ F ¬ 0 F ¬ L ¬ 0 L ¬ F L ¬ 0 F ¬ 0 L
14 8 13 bitri ¬ F 0 ¬ L 0 ¬ F L ¬ 0 F ¬ 0 L
15 1 14 bitri ¬ F 0 L 0 ¬ F L ¬ 0 F ¬ 0 L
16 swrdnznd ¬ F L S substr F L =
17 16 a1d ¬ F L S Word V S substr F L =
18 notnotb F L ¬ ¬ F L
19 zre F F
20 0red F 0
21 19 20 jca F F 0
22 21 3ad2ant2 S Word V F L F 0
23 ltnle F 0 F < 0 ¬ 0 F
24 22 23 syl S Word V F L F < 0 ¬ 0 F
25 orc F < 0 F < 0 L F
26 24 25 syl6bir S Word V F L ¬ 0 F F < 0 L F
27 26 com12 ¬ 0 F S Word V F L F < 0 L F
28 notnotb 0 F ¬ ¬ 0 F
29 28 a1i S Word V F L 0 F ¬ ¬ 0 F
30 zre L L
31 0red L 0
32 30 31 jca L L 0
33 32 3ad2ant3 S Word V F L L 0
34 ltnle L 0 L < 0 ¬ 0 L
35 33 34 syl S Word V F L L < 0 ¬ 0 L
36 29 35 anbi12d S Word V F L 0 F L < 0 ¬ ¬ 0 F ¬ 0 L
37 30 3ad2ant3 S Word V F L L
38 0red S Word V F L 0
39 19 3ad2ant2 S Word V F L F
40 ltleletr L 0 F L < 0 0 F L F
41 37 38 39 40 syl3anc S Word V F L L < 0 0 F L F
42 olc L F F < 0 L F
43 41 42 syl6 S Word V F L L < 0 0 F F < 0 L F
44 43 ancomsd S Word V F L 0 F L < 0 F < 0 L F
45 36 44 sylbird S Word V F L ¬ ¬ 0 F ¬ 0 L F < 0 L F
46 45 com12 ¬ ¬ 0 F ¬ 0 L S Word V F L F < 0 L F
47 27 46 jaoi3 ¬ 0 F ¬ 0 L S Word V F L F < 0 L F
48 47 impcom S Word V F L ¬ 0 F ¬ 0 L F < 0 L F
49 48 orcd S Word V F L ¬ 0 F ¬ 0 L F < 0 L F S < L
50 df-3or F < 0 L F S < L F < 0 L F S < L
51 49 50 sylibr S Word V F L ¬ 0 F ¬ 0 L F < 0 L F S < L
52 swrdnd S Word V F L F < 0 L F S < L S substr F L =
53 52 imp S Word V F L F < 0 L F S < L S substr F L =
54 51 53 syldan S Word V F L ¬ 0 F ¬ 0 L S substr F L =
55 54 ex S Word V F L ¬ 0 F ¬ 0 L S substr F L =
56 55 3expb S Word V F L ¬ 0 F ¬ 0 L S substr F L =
57 56 expcom F L S Word V ¬ 0 F ¬ 0 L S substr F L =
58 57 com23 F L ¬ 0 F ¬ 0 L S Word V S substr F L =
59 18 58 sylbir ¬ ¬ F L ¬ 0 F ¬ 0 L S Word V S substr F L =
60 59 imp ¬ ¬ F L ¬ 0 F ¬ 0 L S Word V S substr F L =
61 17 60 jaoi3 ¬ F L ¬ 0 F ¬ 0 L S Word V S substr F L =
62 15 61 sylbi ¬ F 0 L 0 S Word V S substr F L =
63 62 impcom S Word V ¬ F 0 L 0 S substr F L =