Step |
Hyp |
Ref |
Expression |
1 |
|
elfznn0 |
|
2 |
1
|
anim2i |
|
3 |
2
|
adantr |
|
4 |
|
pfxval |
|
5 |
3 4
|
syl |
|
6 |
5
|
oveq1d |
|
7 |
|
simpl |
|
8 |
|
simpr |
|
9 |
|
0elfz |
|
10 |
1 9
|
syl |
|
11 |
10
|
adantl |
|
12 |
7 8 11
|
3jca |
|
13 |
12
|
adantr |
|
14 |
|
elfzelz |
|
15 |
|
zcn |
|
16 |
15
|
subid1d |
|
17 |
16
|
eqcomd |
|
18 |
14 17
|
syl |
|
19 |
18
|
adantl |
|
20 |
19
|
oveq2d |
|
21 |
20
|
eleq2d |
|
22 |
19
|
oveq2d |
|
23 |
22
|
eleq2d |
|
24 |
21 23
|
anbi12d |
|
25 |
24
|
biimpa |
|
26 |
|
swrdswrd |
|
27 |
13 25 26
|
sylc |
|
28 |
|
elfzelz |
|
29 |
28
|
zcnd |
|
30 |
29
|
adantr |
|
31 |
30
|
adantl |
|
32 |
31
|
addid2d |
|
33 |
|
elfzelz |
|
34 |
33
|
zcnd |
|
35 |
34
|
adantl |
|
36 |
35
|
adantl |
|
37 |
36
|
addid2d |
|
38 |
32 37
|
opeq12d |
|
39 |
38
|
oveq2d |
|
40 |
6 27 39
|
3eqtrd |
|
41 |
40
|
ex |
|