Metamath Proof Explorer


Theorem swrdrn2

Description: The range of a subword is a subset of the range of that word. Stronger version of swrdrn . (Contributed by Thierry Arnoux, 12-Dec-2023)

Ref Expression
Assertion swrdrn2 W Word V M 0 N N 0 W ran W substr M N ran W

Proof

Step Hyp Ref Expression
1 swrdval2 W Word V M 0 N N 0 W W substr M N = x 0 ..^ N M W x + M
2 1 rneqd W Word V M 0 N N 0 W ran W substr M N = ran x 0 ..^ N M W x + M
3 eqidd W Word V M 0 N N 0 W x 0 ..^ N M W = W
4 simpl1 W Word V M 0 N N 0 W x 0 ..^ N M W Word V
5 3 4 wrdfd W Word V M 0 N N 0 W x 0 ..^ N M W : 0 ..^ W V
6 5 ffund W Word V M 0 N N 0 W x 0 ..^ N M Fun W
7 elfzuz3 N 0 W W N
8 7 3ad2ant3 W Word V M 0 N N 0 W W N
9 8 adantr W Word V M 0 N N 0 W x 0 ..^ N M W N
10 fzoss2 W N 0 ..^ N 0 ..^ W
11 9 10 syl W Word V M 0 N N 0 W x 0 ..^ N M 0 ..^ N 0 ..^ W
12 elfzuz M 0 N M 0
13 12 3ad2ant2 W Word V M 0 N N 0 W M 0
14 13 adantr W Word V M 0 N N 0 W x 0 ..^ N M M 0
15 fzoss1 M 0 M ..^ N 0 ..^ N
16 14 15 syl W Word V M 0 N N 0 W x 0 ..^ N M M ..^ N 0 ..^ N
17 simpr W Word V M 0 N N 0 W x 0 ..^ N M x 0 ..^ N M
18 simpl3 W Word V M 0 N N 0 W x 0 ..^ N M N 0 W
19 18 elfzelzd W Word V M 0 N N 0 W x 0 ..^ N M N
20 simpl2 W Word V M 0 N N 0 W x 0 ..^ N M M 0 N
21 20 elfzelzd W Word V M 0 N N 0 W x 0 ..^ N M M
22 fzoaddel2 x 0 ..^ N M N M x + M M ..^ N
23 17 19 21 22 syl3anc W Word V M 0 N N 0 W x 0 ..^ N M x + M M ..^ N
24 16 23 sseldd W Word V M 0 N N 0 W x 0 ..^ N M x + M 0 ..^ N
25 11 24 sseldd W Word V M 0 N N 0 W x 0 ..^ N M x + M 0 ..^ W
26 wrddm W Word V dom W = 0 ..^ W
27 26 3ad2ant1 W Word V M 0 N N 0 W dom W = 0 ..^ W
28 27 adantr W Word V M 0 N N 0 W x 0 ..^ N M dom W = 0 ..^ W
29 25 28 eleqtrrd W Word V M 0 N N 0 W x 0 ..^ N M x + M dom W
30 fvelrn Fun W x + M dom W W x + M ran W
31 6 29 30 syl2anc W Word V M 0 N N 0 W x 0 ..^ N M W x + M ran W
32 31 ralrimiva W Word V M 0 N N 0 W x 0 ..^ N M W x + M ran W
33 eqid x 0 ..^ N M W x + M = x 0 ..^ N M W x + M
34 33 rnmptss x 0 ..^ N M W x + M ran W ran x 0 ..^ N M W x + M ran W
35 32 34 syl W Word V M 0 N N 0 W ran x 0 ..^ N M W x + M ran W
36 2 35 eqsstrd W Word V M 0 N N 0 W ran W substr M N ran W