Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
|
simpl3 |
|
3 |
2
|
elfzelzd |
|
4 |
|
simpl2 |
|
5 |
4
|
elfzelzd |
|
6 |
|
fzoaddel2 |
|
7 |
1 3 5 6
|
syl3anc |
|
8 |
|
simpr |
|
9 |
|
simpl2 |
|
10 |
9
|
elfzelzd |
|
11 |
10
|
zcnd |
|
12 |
|
simpl3 |
|
13 |
12
|
elfzelzd |
|
14 |
13
|
zcnd |
|
15 |
11 14
|
pncan3d |
|
16 |
15
|
oveq2d |
|
17 |
8 16
|
eleqtrrd |
|
18 |
13 10
|
zsubcld |
|
19 |
|
fzosubel3 |
|
20 |
17 18 19
|
syl2anc |
|
21 |
|
simpr |
|
22 |
21
|
oveq1d |
|
23 |
22
|
eqeq2d |
|
24 |
|
fzossz |
|
25 |
24 8
|
sselid |
|
26 |
25
|
zcnd |
|
27 |
26 11
|
npcand |
|
28 |
27
|
eqcomd |
|
29 |
20 23 28
|
rspcedvd |
|
30 |
|
eqcom |
|
31 |
|
simpr |
|
32 |
31
|
fveq2d |
|
33 |
32
|
eqeq2d |
|
34 |
30 33
|
bitr3id |
|
35 |
7 29 34
|
rexxfrd |
|
36 |
|
eqid |
|
37 |
|
fvex |
|
38 |
36 37
|
elrnmpti |
|
39 |
35 38
|
bitr4di |
|
40 |
|
wrdf |
|
41 |
40
|
3ad2ant1 |
|
42 |
41
|
ffnd |
|
43 |
|
elfzuz |
|
44 |
43
|
3ad2ant2 |
|
45 |
|
fzoss1 |
|
46 |
44 45
|
syl |
|
47 |
|
elfzuz3 |
|
48 |
47
|
3ad2ant3 |
|
49 |
|
fzoss2 |
|
50 |
48 49
|
syl |
|
51 |
46 50
|
sstrd |
|
52 |
42 51
|
fvelimabd |
|
53 |
|
swrdval2 |
|
54 |
53
|
rneqd |
|
55 |
54
|
eleq2d |
|
56 |
39 52 55
|
3bitr4rd |
|
57 |
56
|
eqrdv |
|