Metamath Proof Explorer


Theorem swrdsb0eq

Description: Two subwords with the same bounds are equal if the range is not valid. (Contributed by AV, 4-May-2020)

Ref Expression
Assertion swrdsb0eq W Word V U Word V M 0 N 0 N M W substr M N = U substr M N

Proof

Step Hyp Ref Expression
1 simpll W Word V U Word V M 0 N 0 W Word V
2 nn0z M 0 M
3 2 ad2antrl W Word V U Word V M 0 N 0 M
4 nn0z N 0 N
5 4 ad2antll W Word V U Word V M 0 N 0 N
6 swrdlend W Word V M N N M W substr M N =
7 1 3 5 6 syl3anc W Word V U Word V M 0 N 0 N M W substr M N =
8 7 3impia W Word V U Word V M 0 N 0 N M W substr M N =
9 simplr W Word V U Word V M 0 N 0 U Word V
10 swrdlend U Word V M N N M U substr M N =
11 9 3 5 10 syl3anc W Word V U Word V M 0 N 0 N M U substr M N =
12 11 3impia W Word V U Word V M 0 N 0 N M U substr M N =
13 8 12 eqtr4d W Word V U Word V M 0 N 0 N M W substr M N = U substr M N