Metamath Proof Explorer


Theorem swrdsbslen

Description: Two subwords with the same bounds have the same length. (Contributed by AV, 4-May-2020)

Ref Expression
Assertion swrdsbslen W Word V U Word V M 0 N 0 N W N U W substr M N = U substr M N

Proof

Step Hyp Ref Expression
1 simpr1 N M W Word V U Word V M 0 N 0 N W N U W Word V U Word V
2 simpr2 N M W Word V U Word V M 0 N 0 N W N U M 0 N 0
3 simpl N M W Word V U Word V M 0 N 0 N W N U N M
4 swrdsb0eq W Word V U Word V M 0 N 0 N M W substr M N = U substr M N
5 1 2 3 4 syl3anc N M W Word V U Word V M 0 N 0 N W N U W substr M N = U substr M N
6 5 fveq2d N M W Word V U Word V M 0 N 0 N W N U W substr M N = U substr M N
7 nn0re M 0 M
8 nn0re N 0 N
9 ltnle M N M < N ¬ N M
10 ltle M N M < N M N
11 9 10 sylbird M N ¬ N M M N
12 7 8 11 syl2an M 0 N 0 ¬ N M M N
13 12 3ad2ant2 W Word V U Word V M 0 N 0 N W N U ¬ N M M N
14 simpl1l W Word V U Word V M 0 N 0 N W N U M N W Word V
15 simpl2l W Word V U Word V M 0 N 0 N W N U M N M 0
16 nn0z M 0 M
17 nn0z N 0 N
18 16 17 anim12i M 0 N 0 M N
19 18 3ad2ant2 W Word V U Word V M 0 N 0 N W N U M N
20 19 anim1i W Word V U Word V M 0 N 0 N W N U M N M N M N
21 df-3an M N M N M N M N
22 20 21 sylibr W Word V U Word V M 0 N 0 N W N U M N M N M N
23 eluz2 N M M N M N
24 22 23 sylibr W Word V U Word V M 0 N 0 N W N U M N N M
25 simpl3l W Word V U Word V M 0 N 0 N W N U M N N W
26 swrdlen2 W Word V M 0 N M N W W substr M N = N M
27 14 15 24 25 26 syl121anc W Word V U Word V M 0 N 0 N W N U M N W substr M N = N M
28 simpl1r W Word V U Word V M 0 N 0 N W N U M N U Word V
29 simpl3r W Word V U Word V M 0 N 0 N W N U M N N U
30 swrdlen2 U Word V M 0 N M N U U substr M N = N M
31 28 15 24 29 30 syl121anc W Word V U Word V M 0 N 0 N W N U M N U substr M N = N M
32 27 31 eqtr4d W Word V U Word V M 0 N 0 N W N U M N W substr M N = U substr M N
33 32 ex W Word V U Word V M 0 N 0 N W N U M N W substr M N = U substr M N
34 13 33 syld W Word V U Word V M 0 N 0 N W N U ¬ N M W substr M N = U substr M N
35 34 impcom ¬ N M W Word V U Word V M 0 N 0 N W N U W substr M N = U substr M N
36 6 35 pm2.61ian W Word V U Word V M 0 N 0 N W N U W substr M N = U substr M N