Metamath Proof Explorer


Theorem sygbasnfpfi

Description: The class of non-fixed points of a permutation of a finite set is finite. (Contributed by AV, 13-Jan-2019)

Ref Expression
Hypotheses psgnfvalfi.g G = SymGrp D
psgnfvalfi.b B = Base G
Assertion sygbasnfpfi D Fin P B dom P I Fin

Proof

Step Hyp Ref Expression
1 psgnfvalfi.g G = SymGrp D
2 psgnfvalfi.b B = Base G
3 1 2 symgbasf P B P : D D
4 3 ffnd P B P Fn D
5 4 adantl D Fin P B P Fn D
6 fndifnfp P Fn D dom P I = x D | P x x
7 5 6 syl D Fin P B dom P I = x D | P x x
8 rabfi D Fin x D | P x x Fin
9 8 adantr D Fin P B x D | P x x Fin
10 7 9 eqeltrd D Fin P B dom P I Fin