Metamath Proof Explorer


Theorem syl10

Description: A nested syllogism inference. (Contributed by Alan Sare, 17-Jul-2011)

Ref Expression
Hypotheses syl10.1 φ ψ χ
syl10.2 φ ψ θ τ
syl10.3 χ τ η
Assertion syl10 φ ψ θ η

Proof

Step Hyp Ref Expression
1 syl10.1 φ ψ χ
2 syl10.2 φ ψ θ τ
3 syl10.3 χ τ η
4 1 3 syl6 φ ψ τ η
5 2 4 syldd φ ψ θ η