Metamath Proof Explorer


Theorem syl1111anc

Description: Four-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl112anc except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypotheses syl1111anc.1 φ ψ
syl1111anc.2 φ χ
syl1111anc.3 φ θ
syl1111anc.4 φ τ
syl1111anc.5 ψ χ θ τ η
Assertion syl1111anc φ η

Proof

Step Hyp Ref Expression
1 syl1111anc.1 φ ψ
2 syl1111anc.2 φ χ
3 syl1111anc.3 φ θ
4 syl1111anc.4 φ τ
5 syl1111anc.5 ψ χ θ τ η
6 1 2 jca φ ψ χ
7 6 3 4 5 syl21anc φ η