Metamath Proof Explorer


Theorem syl211anc

Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)

Ref Expression
Hypotheses syl3anc.1 φ ψ
syl3anc.2 φ χ
syl3anc.3 φ θ
syl3Xanc.4 φ τ
syl211anc.5 ψ χ θ τ η
Assertion syl211anc φ η

Proof

Step Hyp Ref Expression
1 syl3anc.1 φ ψ
2 syl3anc.2 φ χ
3 syl3anc.3 φ θ
4 syl3Xanc.4 φ τ
5 syl211anc.5 ψ χ θ τ η
6 1 2 jca φ ψ χ
7 6 3 4 5 syl3anc φ η