Metamath Proof Explorer
Description: Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022)
|
|
Ref |
Expression |
|
Hypotheses |
syl21anbrc.1 |
|
|
|
syl21anbrc.2 |
|
|
|
syl21anbrc.3 |
|
|
|
syl21anbrc.4 |
|
|
Assertion |
syl21anbrc |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
syl21anbrc.1 |
|
| 2 |
|
syl21anbrc.2 |
|
| 3 |
|
syl21anbrc.3 |
|
| 4 |
|
syl21anbrc.4 |
|
| 5 |
1 2 3
|
jca31 |
|
| 6 |
5 4
|
sylibr |
|