Metamath Proof Explorer


Theorem syl21anbrc

Description: Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022)

Ref Expression
Hypotheses syl21anbrc.1 φ ψ
syl21anbrc.2 φ χ
syl21anbrc.3 φ θ
syl21anbrc.4 τ ψ χ θ
Assertion syl21anbrc φ τ

Proof

Step Hyp Ref Expression
1 syl21anbrc.1 φ ψ
2 syl21anbrc.2 φ χ
3 syl21anbrc.3 φ θ
4 syl21anbrc.4 τ ψ χ θ
5 1 2 3 jca31 φ ψ χ θ
6 5 4 sylibr φ τ