Metamath Proof Explorer


Theorem syl22anc

Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)

Ref Expression
Hypotheses syl12anc.1 φ ψ
syl12anc.2 φ χ
syl12anc.3 φ θ
syl22anc.4 φ τ
syl22anc.5 ψ χ θ τ η
Assertion syl22anc φ η

Proof

Step Hyp Ref Expression
1 syl12anc.1 φ ψ
2 syl12anc.2 φ χ
3 syl12anc.3 φ θ
4 syl22anc.4 φ τ
5 syl22anc.5 ψ χ θ τ η
6 1 2 jca φ ψ χ
7 6 3 4 5 syl12anc φ η