Metamath Proof Explorer
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)
|
|
Ref |
Expression |
|
Hypotheses |
syl3anc.1 |
|
|
|
syl3anc.2 |
|
|
|
syl3anc.3 |
|
|
|
syl3Xanc.4 |
|
|
|
syl23anc.5 |
|
|
|
syl33anc.6 |
|
|
|
syl133anc.7 |
|
|
|
syl232anc.8 |
|
|
Assertion |
syl232anc |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syl3anc.1 |
|
2 |
|
syl3anc.2 |
|
3 |
|
syl3anc.3 |
|
4 |
|
syl3Xanc.4 |
|
5 |
|
syl23anc.5 |
|
6 |
|
syl33anc.6 |
|
7 |
|
syl133anc.7 |
|
8 |
|
syl232anc.8 |
|
9 |
6 7
|
jca |
|
10 |
1 2 3 4 5 9 8
|
syl231anc |
|