Metamath Proof Explorer


Theorem syl2an

Description: A double syllogism inference. For an implication-only version, see syl2im . (Contributed by NM, 31-Jan-1997)

Ref Expression
Hypotheses syl2an.1 φ ψ
syl2an.2 τ χ
syl2an.3 ψ χ θ
Assertion syl2an φ τ θ

Proof

Step Hyp Ref Expression
1 syl2an.1 φ ψ
2 syl2an.2 τ χ
3 syl2an.3 ψ χ θ
4 1 3 sylan φ χ θ
5 2 4 sylan2 φ τ θ