Metamath Proof Explorer


Theorem syl2an2r

Description: syl2anr with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016) (Proof shortened by Wolf Lammen, 28-Mar-2022)

Ref Expression
Hypotheses syl2an2r.1 φ ψ
syl2an2r.2 φ χ θ
syl2an2r.3 ψ θ τ
Assertion syl2an2r φ χ τ

Proof

Step Hyp Ref Expression
1 syl2an2r.1 φ ψ
2 syl2an2r.2 φ χ θ
3 syl2an2r.3 ψ θ τ
4 1 3 sylan φ θ τ
5 2 4 syldan φ χ τ