Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Logical conjunction
syl2an2r
Metamath Proof Explorer
Description: syl2anr with antecedents in standard conjunction form. (Contributed by Alan Sare , 27-Aug-2016) (Proof shortened by Wolf Lammen , 28-Mar-2022)
Ref
Expression
Hypotheses
syl2an2r.1
⊢ φ → ψ
syl2an2r.2
⊢ φ ∧ χ → θ
syl2an2r.3
⊢ ψ ∧ θ → τ
Assertion
syl2an2r
⊢ φ ∧ χ → τ
Proof
Step
Hyp
Ref
Expression
1
syl2an2r.1
⊢ φ → ψ
2
syl2an2r.2
⊢ φ ∧ χ → θ
3
syl2an2r.3
⊢ ψ ∧ θ → τ
4
1 3
sylan
⊢ φ ∧ θ → τ
5
2 4
syldan
⊢ φ ∧ χ → τ