Metamath Proof Explorer


Theorem syl2an3an

Description: syl3an with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016)

Ref Expression
Hypotheses syl2an3an.1 φ ψ
syl2an3an.2 φ χ
syl2an3an.3 θ τ
syl2an3an.4 ψ χ τ η
Assertion syl2an3an φ θ η

Proof

Step Hyp Ref Expression
1 syl2an3an.1 φ ψ
2 syl2an3an.2 φ χ
3 syl2an3an.3 θ τ
4 syl2an3an.4 ψ χ τ η
5 1 2 3 4 syl3an φ φ θ η
6 5 3anidm12 φ θ η