Metamath Proof Explorer


Theorem syl2anb

Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999)

Ref Expression
Hypotheses syl2anb.1 φ ψ
syl2anb.2 τ χ
syl2anb.3 ψ χ θ
Assertion syl2anb φ τ θ

Proof

Step Hyp Ref Expression
1 syl2anb.1 φ ψ
2 syl2anb.2 τ χ
3 syl2anb.3 ψ χ θ
4 1 3 sylanb φ χ θ
5 2 4 sylan2b φ τ θ