Metamath Proof Explorer


Theorem syl2anbr

Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999)

Ref Expression
Hypotheses syl2anbr.1 ψ φ
syl2anbr.2 χ τ
syl2anbr.3 ψ χ θ
Assertion syl2anbr φ τ θ

Proof

Step Hyp Ref Expression
1 syl2anbr.1 ψ φ
2 syl2anbr.2 χ τ
3 syl2anbr.3 ψ χ θ
4 1 3 sylanbr φ χ θ
5 2 4 sylan2br φ τ θ