Metamath Proof Explorer


Theorem syl2and

Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)

Ref Expression
Hypotheses syl2and.1 φ ψ χ
syl2and.2 φ θ τ
syl2and.3 φ χ τ η
Assertion syl2and φ ψ θ η

Proof

Step Hyp Ref Expression
1 syl2and.1 φ ψ χ
2 syl2and.2 φ θ τ
3 syl2and.3 φ χ τ η
4 2 3 sylan2d φ χ θ η
5 1 4 syland φ ψ θ η