Metamath Proof Explorer
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)
|
|
Ref |
Expression |
|
Hypotheses |
syl2and.1 |
|
|
|
syl2and.2 |
|
|
|
syl2and.3 |
|
|
Assertion |
syl2and |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syl2and.1 |
|
2 |
|
syl2and.2 |
|
3 |
|
syl2and.3 |
|
4 |
2 3
|
sylan2d |
|
5 |
1 4
|
syland |
|