Metamath Proof Explorer


Theorem syl2ani

Description: A syllogism inference. (Contributed by NM, 3-Aug-1999)

Ref Expression
Hypotheses syl2ani.1 φ χ
syl2ani.2 η θ
syl2ani.3 ψ χ θ τ
Assertion syl2ani ψ φ η τ

Proof

Step Hyp Ref Expression
1 syl2ani.1 φ χ
2 syl2ani.2 η θ
3 syl2ani.3 ψ χ θ τ
4 2 3 sylan2i ψ χ η τ
5 1 4 sylani ψ φ η τ