Metamath Proof Explorer


Theorem syl2anr

Description: A double syllogism inference. For an implication-only version, see syl2imc . (Contributed by NM, 17-Sep-2013)

Ref Expression
Hypotheses syl2an.1 φ ψ
syl2an.2 τ χ
syl2an.3 ψ χ θ
Assertion syl2anr τ φ θ

Proof

Step Hyp Ref Expression
1 syl2an.1 φ ψ
2 syl2an.2 τ χ
3 syl2an.3 ψ χ θ
4 1 2 3 syl2an φ τ θ
5 4 ancoms τ φ θ