Metamath Proof Explorer


Theorem syl323anc

Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)

Ref Expression
Hypotheses syl3anc.1 φ ψ
syl3anc.2 φ χ
syl3anc.3 φ θ
syl3Xanc.4 φ τ
syl23anc.5 φ η
syl33anc.6 φ ζ
syl133anc.7 φ σ
syl233anc.8 φ ρ
syl323anc.9 ψ χ θ τ η ζ σ ρ μ
Assertion syl323anc φ μ

Proof

Step Hyp Ref Expression
1 syl3anc.1 φ ψ
2 syl3anc.2 φ χ
3 syl3anc.3 φ θ
4 syl3Xanc.4 φ τ
5 syl23anc.5 φ η
6 syl33anc.6 φ ζ
7 syl133anc.7 φ σ
8 syl233anc.8 φ ρ
9 syl323anc.9 ψ χ θ τ η ζ σ ρ μ
10 4 5 jca φ τ η
11 1 2 3 10 6 7 8 9 syl313anc φ μ